organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Amino-4-*tert*-butyl-5-(4-chlorobenzyl)thiazole

Yong-Tao Wang, Lin Xia, Ai-Xi Hu,* Gao Cao and Juan-Juan Xu

College of Chemistry and Chemical Engineering, Hunan University 410082, Changsha, People's Republic of China Correspondence e-mail: axhu0731@yahoo.com.cn

Received 27 October 2008; accepted 10 November 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.120; data-to-parameter ratio = 16.3.

In the title compound, $C_{14}H_{17}ClN_2S$, the dihedral angle between the planes of the thiazole and chlorophenyl rings is 88.86 (3)°. In the crystal, inversion dimers occur, linked by pairs of N-H···N hydrogen bonds.

Related literature

For background on 2-amino-4-arylthiazoles and their wideranging antifungal activities, see: Hu *et al.* (2007*a*); Marcantonio *et al.* (2002). For related structures, see: Cao *et al.* (2007); He *et al.* (2006); Hu *et al.* (2007*b*); Xu *et al.* (2007).

a = 21.1775 (13) Å

c = 22.8193 (14) Å

b = 5.8544 (4) Å

Experimental

Crystal data
C ₁₄ H ₁₇ ClN ₂ S
$M_r = 280.81$
Monoclinic, $C2/c$

$\beta = 98.5480 \ (10)^{\circ}$
V = 2797.7 (3) Å ³
Z = 8
Mo $K\alpha$ radiation

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\rm min} = 0.829, T_{\rm max} = 0.934$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.120$ S = 1.062705 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots N1^{i}$	0.88	2.24	3.032 (2)	150

 $\mu = 0.41 \text{ mm}^{-1}$ T = 173 (2) K

 $R_{\rm int} = 0.021$

166 parameters

 $\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.32 \ {\rm e} \ {\rm \AA}^{-3}$

 $0.48 \times 0.29 \times 0.17 \text{ mm}$

6230 measured reflections

2705 independent reflections

2187 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry code: (i) -x + 1, -y + 2, -z.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The work was funded by the National Key Technology R&D Program, China (NO: 2006 BAE01A01–4).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2282).

References

- Bruker (2001). *SMART*. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2003). *SAINT-Plus*. Bruker AXS Inc., Madison, Wisconsin, USA. Cao, G., Hu, A.-X., Xu, J.-J. & Xia, L. (2007). *Acta Cryst*. E**63**, 02534.
- He, D.-H., Cao, G. & Hu, A.-X. (2006). Acta Cryst. E62, 05637–05638.

Hu, A.-X., Cao, G., Xu, J.-J., Xia, L. & He, D.-H. (2007a). J. Hunan Univ. (Nat. Sci.), **10**, 78–80.

Hu, A.-X., Zhang, J.-Y., Cao, G., Xu, J.-J. & Xia, L. (2007b). Acta Cryst. E63, 02533.

Marcantonio, K. M., Frey, L. F., Murry, J. A. & Chen, C. Y. (2002). *Tetrahedron Lett.* 43, 8845–8848.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xu, J.-J., Hu, A.-X. & Cao, G. (2007). Acta Cryst. E63, 0533-0534.

supplementary materials

Acta Cryst. (2008). E64, o2350 [doi:10.1107/S160053680803715X]

2-Amino-4-tert-butyl-5-(4-chlorobenzyl)thiazole

Y.-T. Wang, L. Xia, A.-X. Hu, G. Cao and J.-J. Xu

Comment

2-Amino-4-arylthiazoles are an important class of heterocyclic compounds in the field of organic pharmaceutial chenistry (Hu *et al.*, 2007a, Marcantonio *et al.*,2002). Because of their wide-ranging antifungal activities, The structure of 2-amino-4-arylthiazoles were reported before (Cao,*et al.*,2007, He *et al.*,2006, Hu *et al.*,2007b, Xu, *et al.*,2007). Herein we report the synthesis and crystal structure of 2-amino-4-*tert*-butyl-5-(4- chlorobenzyl)thiazole(I). The dihedral angle between the planes of thiazole and the chlorophenyl ring is 88.86 °. The molecules are linked by N—H···N hydrogen bonds.

Experimental

0.01 mol of 1-(4-Chlorophenyl)-4,4-dimethylpentan-3-one was dissolved in 100 ml e thanol and the mixture was stirred and heated to reflex. 0.012 mol of cupric chloride was added by dropwise. The reaction was monitored by TLC, after it finished, filtered the mixture and concentrated *in vacuo*. The residue was taken up in dichloromethane, washed with 10% hydrochloric acid, then washed with water until the solution was neutral, dried and concentrated *in vacuo* to give 4-chloro-1-(4-chlorophenyl)-4,4-dimethylpentan -3-one, yield 87%. Then a solution with 0.005 mol of thiurea and 0.005 mol of 4-chloro-1-(4-chlorophenyl)-4,4-dimethylpentan -3-one in 50 ml of ethanol was refluxed for 10 h. After finishing the reaction, added 10 ml ammonia and continus to stir the sulution 2 h. Then the solution was cooled and the precipitate formed was filtered out, dried, giving white crystals of title compound, yield 73.8%. The crystals for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

Methyl H atoms were placed in calculated positions, with C—H = 0.96 Å, and torsion angles were refined, with $U_{iso}(H) = 1.5Ueq(C)$. Other H atoms were placed in geometrically idealized positions and refined as riding model, with N—H distance of 0.86 Å, C—H distances of 0.98Å (C3—H3), 0.93Å (aromatic H atoms) and 0.97Å (methylene H atoms). The constraint $U_{iso}(H) = 1.2Ueq(carrier)$ was applied.

Figures

Fig. 1. Molecular structure showing 30% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii. Only the major occupied sites of the disordered *tert*-butyl group are showen.

Fig. 2. Packing diagram showing the N—H…N hydrogen bonds.

2-Amino-4-tert-butyl-5-(4-chlorobenzyl)thiazole

Crystal data	
C ₁₄ H ₁₇ ClN ₂ S	$F_{000} = 1184$
$M_r = 280.81$	$D_{\rm x} = 1.333 {\rm ~Mg~m}^{-3}$
Monoclinic, C2/c	Melting point: 390 K
Hall symbol: -C 2yc	Mo K α radiation $\lambda = 0.71073$ Å
<i>a</i> = 21.1775 (13) Å	Cell parameters from 3521 reflections
b = 5.8544 (4) Å	$\theta = 2.8 - 26.9^{\circ}$
c = 22.8193 (14) Å	$\mu = 0.41 \text{ mm}^{-1}$
$\beta = 98.5480 \ (10)^{\circ}$	T = 173 (2) K
$V = 2797.7 (3) \text{ Å}^3$	Block, colourless
Z = 8	$0.48 \times 0.29 \times 0.17 \text{ mm}$

Data collection

Bruker SMART 1000 CCD diffractometer	2705 independent reflections
Radiation source: fine-focus sealed tube	2187 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.022$
T = 173(2) K	$\theta_{\rm max} = 26.0^{\circ}$
ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -26 \rightarrow 23$
$T_{\min} = 0.829, T_{\max} = 0.934$	$k = -5 \rightarrow 7$
6230 measured reflections	<i>l</i> = −19→28

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.0686P)^2 + 2.6543P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
2705 reflections	$\Delta \rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$

166 parameters

 $\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Experimental. ¹H NMR (CDCl₃, 400 MHz) (ppm):1.32(s,9H,3CH₃),4.1(s,2H,CH₂), 4.8(bs,2H,NH₂),7.12(d,J=8.0 Hz,2H,2,6-C₆H₄Cl), 7.26(d,J=8.0Hz,2H,3,5-C₆H₄Cl)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.13949 (3)	0.57508 (12)	0.24064 (3)	0.0437 (2)
S1	0.33404 (2)	0.74487 (9)	-0.00369 (2)	0.02787 (18)
C1	0.40616 (9)	0.8911 (4)	0.00413 (9)	0.0235 (4)
C2	0.42658 (10)	0.6258 (3)	0.07470 (8)	0.0228 (4)
C3	0.36579 (10)	0.5622 (3)	0.05422 (9)	0.0244 (4)
C4	0.32309 (10)	0.3710 (4)	0.06838 (9)	0.0284 (5)
H4A	0.3504	0.2416	0.0845	0.034*
H4B	0.2975	0.3188	0.0309	0.034*
C5	0.27747 (9)	0.4274 (3)	0.11205 (9)	0.0229 (4)
C6	0.27927 (11)	0.6335 (4)	0.14241 (9)	0.0301 (5)
H6	0.3101	0.7454	0.1361	0.036*
C7	0.23707 (11)	0.6786 (4)	0.18159 (10)	0.0309 (5)
H7	0.2389	0.8202	0.2021	0.037*
C8	0.19240 (10)	0.5176 (4)	0.19071 (9)	0.0287 (5)
C9	0.18919 (10)	0.3095 (4)	0.16165 (9)	0.0296 (5)
Н9	0.1587	0.1978	0.1687	0.036*
C10	0.23148 (10)	0.2676 (4)	0.12204 (9)	0.0267 (5)
H10	0.2291	0.1266	0.1012	0.032*
C11	0.47436 (10)	0.5254 (4)	0.12457 (9)	0.0260 (5)
C12	0.50271 (12)	0.7208 (4)	0.16519 (10)	0.0359 (6)
H12A	0.4687	0.7939	0.1833	0.054*
H12B	0.5224	0.8336	0.1418	0.054*
H12C	0.5351	0.6594	0.1964	0.054*
C13	0.52788 (11)	0.4074 (4)	0.09748 (10)	0.0358 (6)
H13A	0.5609	0.3542	0.1292	0.054*
H13B	0.5467	0.5160	0.0723	0.054*
H13C	0.5103	0.2768	0.0736	0.054*

supplementary materials

C14	0.44542 (13)	0.3499 (5)	0.16253 (11)	0.0425 (6)
H14A	0.4077	0.4155	0.1763	0.064*
H14B	0.4770	0.3087	0.1968	0.064*
H14C	0.4330	0.2131	0.1388	0.064*
N1	0.44938 (8)	0.8119 (3)	0.04551 (7)	0.0228 (4)
N2	0.41428 (9)	1.0743 (3)	-0.03037 (8)	0.0289 (4)
H2A	0.4509	1.1483	-0.0254	0.035*
H2B	0.3830	1.1191	-0.0577	0.035*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0357 (3)	0.0626 (4)	0.0359 (3)	0.0072 (3)	0.0153 (3)	-0.0044 (3)
S1	0.0206 (3)	0.0356 (3)	0.0269 (3)	-0.0032 (2)	0.0018 (2)	0.0018 (2)
C1	0.0205 (10)	0.0295 (11)	0.0213 (10)	-0.0018 (8)	0.0060 (8)	-0.0023 (8)
C2	0.0255 (11)	0.0245 (10)	0.0196 (9)	-0.0025 (8)	0.0076 (8)	-0.0010 (8)
C3	0.0265 (11)	0.0249 (11)	0.0227 (10)	-0.0026 (8)	0.0062 (8)	-0.0009 (8)
C4	0.0279 (11)	0.0287 (11)	0.0297 (11)	-0.0075 (9)	0.0077 (9)	-0.0046 (9)
C5	0.0219 (10)	0.0246 (10)	0.0217 (10)	-0.0012 (8)	0.0016 (8)	0.0023 (8)
C6	0.0337 (12)	0.0275 (11)	0.0293 (11)	-0.0057 (9)	0.0059 (9)	-0.0021 (9)
C7	0.0348 (12)	0.0293 (11)	0.0280 (11)	0.0008 (10)	0.0033 (9)	-0.0067 (9)
C8	0.0246 (11)	0.0404 (12)	0.0215 (10)	0.0054 (9)	0.0044 (8)	0.0026 (9)
C9	0.0246 (11)	0.0363 (12)	0.0280 (11)	-0.0025 (9)	0.0045 (9)	0.0040 (9)
C10	0.0268 (11)	0.0253 (11)	0.0278 (11)	-0.0018 (9)	0.0036 (9)	0.0011 (8)
C11	0.0283 (11)	0.0275 (11)	0.0223 (10)	0.0000 (9)	0.0043 (8)	0.0049 (8)
C12	0.0456 (15)	0.0374 (13)	0.0220 (11)	0.0007 (11)	-0.0043 (10)	-0.0004 (9)
C13	0.0376 (13)	0.0377 (13)	0.0319 (12)	0.0090 (10)	0.0049 (10)	0.0052 (10)
C14	0.0419 (14)	0.0481 (15)	0.0377 (13)	-0.0053 (12)	0.0064 (11)	0.0190 (12)
N1	0.0222 (9)	0.0263 (9)	0.0204 (8)	-0.0008 (7)	0.0044 (7)	0.0030 (7)
N2	0.0248 (9)	0.0323 (10)	0.0285 (9)	-0.0004 (8)	0.0005 (7)	0.0105 (8)

Geometric parameters (Å, °)

Cl1—C8	1.746 (2)	C8—C9	1.383 (3)
S1—C1	1.737 (2)	C9—C10	1.386 (3)
S1—C3	1.754 (2)	С9—Н9	0.9500
C1—N1	1.299 (3)	C10—H10	0.9500
C1—N2	1.356 (3)	C11—C14	1.530 (3)
C2—C3	1.355 (3)	C11—C13	1.534 (3)
C2—N1	1.400 (3)	C11—C12	1.537 (3)
C2—C11	1.524 (3)	C12—H12A	0.9800
C3—C4	1.504 (3)	C12—H12B	0.9800
C4—C5	1.524 (3)	C12—H12C	0.9800
C4—H4A	0.9900	C13—H13A	0.9800
C4—H4B	0.9900	C13—H13B	0.9800
C5—C6	1.389 (3)	C13—H13C	0.9800
C5—C10	1.393 (3)	C14—H14A	0.9800
C6—C7	1.380 (3)	C14—H14B	0.9800
С6—Н6	0.9500	C14—H14C	0.9800

С7—С8	1.373 (3)	N2—H2A	0.8800
С7—Н7	0.9500	N2—H2B	0.8800
C1—S1—C3	89.44 (10)	C9—C10—C5	121.5 (2)
N1—C1—N2	124.57 (19)	С9—С10—Н10	119.2
N1—C1—S1	114.38 (15)	С5—С10—Н10	119.2
N2—C1—S1	121.04 (15)	C2—C11—C14	113.86 (19)
C3—C2—N1	115.28 (18)	C2—C11—C13	108.74 (17)
C3—C2—C11	130.02 (19)	C14—C11—C13	107.96 (19)
N1—C2—C11	114.70 (17)	C2—C11—C12	108.64 (17)
C2—C3—C4	134.5 (2)	C14—C11—C12	108.16 (18)
C2—C3—S1	109.30 (15)	C13—C11—C12	109.42 (19)
C4—C3—S1	116.10 (15)	C11—C12—H12A	109.5
C3—C4—C5	116.06 (17)	C11—C12—H12B	109.5
C3—C4—H4A	108.3	H12A—C12—H12B	109.5
C5—C4—H4A	108.3	C11—C12—H12C	109.5
C3—C4—H4B	108.3	H12A—C12—H12C	109.5
C5—C4—H4B	108.3	H12B—C12—H12C	109.5
H4A—C4—H4B	107.4	C11—C13—H13A	109.5
C6—C5—C10	118.02 (19)	C11—C13—H13B	109.5
C6—C5—C4	122.77 (18)	H13A—C13—H13B	109.5
C10—C5—C4	119.21 (18)	C11—C13—H13C	109.5
C7—C6—C5	121.1 (2)	H13A—C13—H13C	109.5
С7—С6—Н6	119.4	H13B—C13—H13C	109.5
С5—С6—Н6	119.4	C11—C14—H14A	109.5
C8—C7—C6	119.6 (2)	C11—C14—H14B	109.5
С8—С7—Н7	120.2	H14A—C14—H14B	109.5
С6—С7—Н7	120.2	C11—C14—H14C	109.5
С7—С8—С9	121.2 (2)	H14A—C14—H14C	109.5
C7—C8—Cl1	119.34 (17)	H14B—C14—H14C	109.5
C9—C8—Cl1	119.48 (17)	C1—N1—C2	111.59 (17)
C8—C9—C10	118.6 (2)	C1—N2—H2A	120.0
С8—С9—Н9	120.7	C1—N2—H2B	120.0
С10—С9—Н9	120.7	H2A—N2—H2B	120.0
C3—S1—C1—N1	0.05 (16)	C6—C7—C8—Cl1	179.63 (17)
C3—S1—C1—N2	-178.88 (18)	C7—C8—C9—C10	-1.1 (3)
N1—C2—C3—C4	175.9 (2)	Cl1—C8—C9—C10	179.78 (16)
C11—C2—C3—C4	-3.8 (4)	C8—C9—C10—C5	1.4 (3)
N1—C2—C3—S1	-1.0 (2)	C6—C5—C10—C9	-1.0(3)
C11—C2—C3—S1	179.30 (18)	C4—C5—C10—C9	179.46 (19)
C1—S1—C3—C2	0.54 (16)	C3—C2—C11—C14	-10.1 (3)
C1—S1—C3—C4	-177.02 (16)	N1-C2-C11-C14	170.24 (19)
C2—C3—C4—C5	96.2 (3)	C3—C2—C11—C13	110.3 (2)
S1—C3—C4—C5	-87.0 (2)	N1-C2-C11-C13	-69.4 (2)
C3—C4—C5—C6	-6.9 (3)	C3—C2—C11—C12	-130.7 (2)
C3—C4—C5—C10	172.63 (18)	N1—C2—C11—C12	49.7 (2)
C10—C5—C6—C7	0.4 (3)	N2—C1—N1—C2	178.26 (18)
C4—C5—C6—C7	179.9 (2)	S1—C1—N1—C2	-0.6 (2)
C5—C6—C7—C8	-0.2 (3)	C3—C2—N1—C1	1.1 (3)

supplementary materials

С6—С7—С8—С9	0.5 (3)	C11—C2—N1—C1	-	-179.18 (17)
Hydrogen-bond geometry (Å, °)				
D—H…A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2A…N1 ⁱ	0.88	2.24	3.032 (2)	150
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$.				

Fig. 1

